Grade 9: Unit 5- Polynomials

Section 5.1 Modeling Polynomials

Polynomial:

- an algebraic **expression** that contains one term or a sum of terms.
- The term(s) may contain variables (which will have whole number exponents).
- And a term may be a number.

```
3x + 1 → is a polynomial. It contains a variable (whose exponent is 1) and numbers. Since it is an expression, there is no equal sign.
```

- → This polynomial has two **terms**. A term is a number, or a variable, or the product of numbers and variables. Terms are separated by + or . Therefore, 3x, is one term and 1, is another term.
- → In the term, 3x, the 3 is called the numerical coefficient. This is the number in front of the variable, it's the numerical factor of a term. X is called the variable.
- → 1 is called the constant term. There is no variable attached to this number. It is the number in the expression that does not change.

Note:

An algebraic expression that contains a term with a variable in the denominator,

such as $\frac{3}{n}$, or the square root of a variable, such as \sqrt{n} , **is not a polynomial**.

Types of Polynomials

We can classify a polynomial by the numbers of terms it has. Polynomials with 1, 2, or 3 terms have special names.

A **monomial** has 1 term; for example: 5x, 9, $-2p^2$ A **binomial** has 2 terms; for example: 2c - 5, $2m^2 + 3m$, x + yA **trinomial** has 3 terms; for example: $2h^2 - 6h + 4$, x + y + z Example: Identify (i) the variable

- (ii) the number of terms
- (iii) the numerical coefficient(s)
- (iv) the constant term and
- (v) the type of polynomial

a). $3x^2 + 2x - 1$	(i) x	b). 6xy – x ³	(i) x
	(ii) 3		(ii) 2
	(iii) 3 and 2		(iii) 6 and −1
	(iv) −1		(iv) none
	(v) trinomial		(v) binomial

c). xy + 6 - z + 2x²
(i) x, y and z
(ii) 4
(iii) +1, -1 and 2.
(iv) + 6
(v) just a polynomial
(more than 3 terms does not have a special name).

Equivalent Polynomials - are polynomials that have exactly the same terms, but the terms could be in a different order.

Both these polynomials have +3 with x² +2 with x and a constant term of – 1 This polynomial is different because it has – 3 with x^2 and a constant term of + 1

Degree of a Polynomial

Degree: The term with the greatest exponent.

Rules for determining the degree:

• The **degree of a monomial** is the sum of the exponents of its variables.

Monomial	Degree
4x ²	2
9ab	2

• The **degree of a polynomial with one variable** is the highest power of the variable in any one term.

Polynomials	Degree
$6x^2 + 3x$	2
$7 + x^2 - 1$	2

Example: Name the coefficients, degree and the constant term of each polynomial.

A: -3x² + 4x - 5 **B:** 3 + 2ab - b **C**: -6 - 5x

Solution:

A:Coefficients: -3 and 4
Degree: 2B:Coefficients: -1 and 2
Degree: 2C:Coefficients: -5
Degree: 1Constant Term: -5Constant Term: 3C:Constant Term: -6

Modeling Polynomials

In algebra we use algebra tiles to model integers and variables.

Shaded tiles represent **positive** tiles

Non-shaded tiles represent **negative** tiles

Colors can also be used to represent a tile.

IN YOUR TEXTBOOK:

The variable most commonly used is X, however, any variable can be used.

REAL ALGEBRA TILES:

Green and Red is Positive

White is Negative

**** To be clear in your notes: Shaded is Positive Unshaded is Negative

Algebra tiles get their name from the area of their tiles. Remember length × width = area

Examples:

- 1. Use algebra tiles to model each expression.
- a). $3x^2 2x + 5$

b). $x^2 + 3x - 6$

Remember any variable can be used instead of x.

2. Match the following polynomials to the appropriate diagram.

A polynomial should be written in **descending order**. This means the exponent of the variable should decrease from left to right.

Ex: The polynomial $2k - 4k^2 + 7$ is properly written as $-4k^2 + 2k + 7$ in descending order.

4. Rearrange the following polynomials in descending order.

a). $-2p + 4p^2 - 9$ b). $5x^2 + 7 - 8x$ c). $33 + 90c + 100c^2$

Answers:

a). $4p^2 - 2p - 9$ b). $5x^2 - 8x + 7$ c). $100c^2 + 90c + 33$

Section 5.2 Like Terms and Unlike Terms

When you worked with integers, a +1 tile and a -1 tile formed a **zero pair**.

The same applies for the x and x^2 tiles.

Any two **opposite colored tiles** of the **same size** has a sum of **zero**. We can combine these tiles because they are **like terms**.

Like Terms – terms that have the same variable, raised to the same exponent.

Examples: a). 4x and – 2x b). +1 and +8 c). x² and – 3x²

Like terms can be combined or simplified. Sketch the tiles above and cancel the zero pairs where possible, to simplify the polynomial.

Unlike Terms - terms which contain different variables entirely or are the same variable raised to different exponents.

Examples: a). x + yb). 2x + 3c). $4x + 2x^2$ These are simplified as much as possible already because they don't contain any like terms.

Examples: Write a simplified expression for the algebra tiles below.

You can rearrange the tiles so you have like terms next to each other.

These tiles represent the polynomial $2x^2 - x^2 - 4x - 3 + 2$

Cancel zero pairs to simplify.

Answer: $x^2 - 4x - 1$

Therefore, without tiles, the polynomial $2x^2 - x^2 - 4x - 3 + 2$ simplifies to $x^2 - 4x - 1$

2). Sketch the simplified expression using algebra tiles for: $4n^2 - 1 - 3n - 3 + 5n - 2n^2$

Simplified answer: $2n^2 + 2n - 4$

Therefore the polynomial $4n^2 - 1 - 3n - 3 + 5n - 2n^2$ simplified to $2n^2 + 2n - 4$.

Can you see how to simplify like terms without using tiles?

$$4n^{2}-1-3n-3+5n-2n^{2} \text{ means } 4n^{2} \text{ and } -2n^{2} = 2n^{2}$$

$$-1-3n-3+5n \text{ means } -3n \text{ and } 5n = 2n$$

$$-1-3 \text{ means } -1 \text{ and } -3 = -4$$

$$Answer: 2n^{2}+2n-4$$

- 3). Simplify each polynomial without using tiles.
 - A: 3x + 5xB: -13a 10a= 8x= -23aC: 16n + n 17nD: -j + 7k 3j= 0= -4j + 7kE: 8a 2b 6a 3bF: -q + 7q + 11n + 11p 8q
 - = 2a 5b = -2q + 11n + 11p
- 4. Wayne was asked to write an expression equivalent to 2x 7 4x + 8.

His solution was:

2x - 7 - 4x + 8= 2x - 4x - 7 + 8

- a). What errors did he make?
- → When he combined 2x 4x, he said the answer was 2x and it should have been 2x.
 → When he combined 7 + 8, he said the answer was 1 and it should have been +1.
- b). Show the correct simplification.
 - 2x 7 4x + 8= 2x 4x 7 + 8= -2x + 1

Section 5.3 Adding Polynomials

To add or subtract separate polynomials, you just need to combine like terms.

Example 2: Add symbolically (using algebra)

Example 3: Add: using algebra tiles. Write your answer using tiles and symbolically.

You can add polynomials horizontally and vertically.

Try: $(7n + 14) + (-6n^{2} + n - 6)$ Horizontally $7n + 14 + -6n^{2} + n - 6$ $= -6n^{2} + n + 7n + 14 - 6$ $= -6n^{2} + 8n + 8$ Horizontally just group like terms and simplify Vertically $-6n^{2} + n - 6$ $+ \frac{7n + 14}{-6n^{2} + 8n + 8}$ Vertically line up like terms and simplify

Example 4: Add $(2x^2 + 3x - 2) + (-x^2 + 7x - 3)$ both horizontally and vertically.

Horizontally $2x^{2} + 3x - 2 + -x^{2} + 7x - 3$ $2x^{2} + -x^{2} + 3x + 7x - 2 - 3$ $= x^{2} + 10x - 5$ Vertically $2x^{2} + 3x - 2$ $+ -x^{2} + 7x - 3$ $x^{2} + 10x - 5$

Example 5: Write a polynomial for the **perimeter** of this rectangle.

Example 6: Adding polynomials in two variables

Add:
$$(2a^{2} + a - 3b - 7ab + 3b^{2}) + (-4b^{2} + 3ab + 6b - 5a + 5a^{2})$$

= $2a^{2} + a - 3b - 7ab + 3b^{2} + -4b^{2} + 3ab + 6b - 5a + 5a^{2}$
= $2a^{2} + 5a^{2} + 3b^{2} - 4b^{2} + a - 5a - 3b + 6b - 7ab + 3ab$
= $7a^{2} - b^{2} - 4a + 3b - 4ab$

Question:

A student added $(4x^2 - 8x + 1) + (2x^2 - 6x - 2)$ as follows. $(4x^2 - 8x + 1) + (2x^2 - 6x - 2)$ $= 4x^2 - 8x + 1 + 2x^2 - 6x - 2$ $= 4x^2 + 2x^2 - 8x - 6x + 1 - 2$ $= 6x^2 - 2x - 1$

(i) Is the students work correct?

(ii) If not, explain where the student made any errors and write the correct answer.

Answer: This student is not correct, they made a mistake combining their x-term. - 8x - 6x = -14x not - 2x

Correct answer: $6x^2 - 14x - 1$

Section 5.4 Subtracting Polynomials

Remember from earlier this year the word "opposite".

What is the opposite of 2.4 ?	What is the opposite of – 10 ?		
Answer: -2.4	Answer: 10		

By definition, opposite numbers have a sum of zero. The same idea applies to polynomials. **Opposite polynomials will have a sum of zero**.

What is the opposite of 2x ?	What is the opposite of – x^2 ?
Answer: – 2x	Answer: x ²

Example 1: What is the opposite of each polynomial listed below?a). -5xb). 11c). $-24x^4$ Getting the opposite of a
monomial is just like
getting the opposite of a #.Answers: a). 5xb). -11c). $24x^4$

How do you think you will get the opposite of a binomial or trinomial?

d). 2x + 3Answer: -2x - 3e). $4x^2 - 7x + 3$ Answer: $-4x^2 + 7x - 3$

f). $(-2xy - 2y^2 + 3x^2)$ Answer: $2xy + 2y^2 - 3x^2$

Example 2: Sketch the opposite of the polynomial using algebra tiles.

Answers:

When subtracting polynomials you must remember to **ADD THE OPPOSITE** of every term in the polynomial first, then combine like terms.

We will be subtracting polynomials symbolically and using algebra tiles.

Example 3: Subtract using algebra, then simplify.

a). $(3x^2 - 6x + 4) - (7x^2 + 3x - 2)$ We must add the opposite of every term in this polynomial. The first

polynomial does not change.

= $(3x^2 - 6x + 4) + (-7x^2 - 3x + 2)$ Now you are back to adding polynomials.

- $= 3x^2 7x^2 3x 6x + 4 + 2$
- $= -4x^2 9x + 6$

b).
$$(-2a^{2} + a - 1) - (a^{2} - 3a + 2)$$

= $(-2a^{2} + a - 1) + (-a^{2} + 3a - 2)$
= $-2a^{2} - a^{2} + a + 3a - 1 - 2$
= $-3a^{2} + 4a - 3$

Example 4: Subtract using algebra tiles, then simplify.

Just like with adding, we can subtract polynomials horizontally and vertically.

Example 5: Subtract vertically.

1	Algebra	Algebra Tiles
	(3x ² – 4x) – (2x ² – x)	
	(3x ² – 4x) + (–2x ² + x)	
	$3x^2 - 2x^2 - 4x + x$	
	x ² – 3x	

Example 6: Subtract using algebra and algebra tiles.

Example 7:

A student subtracted like this: $(2y^2 - 3y + 5) - (y^2 + 5y - 2)$ $= 2y^2 - 3y + 5 - y^2 + 5y - 2$ $= 2y^2 - y^2 - 3y + 5y + 5 - 2$

 $= y^2 - 2y + 3$

- (i) Explain why the solution is incorrect.
- (ii) What is the correct answer? Show your work.

Answer:

(i) They added the opposite incorrectly. They only got the opposite of y^2 , when they should have gotten the opposite of every term in the polynomial, including the opposite of 5y and -2.

(ii)
$$(2y^2 - 3y + 5) - (y^2 + 5y - 2)$$

= $2y^2 - 3y + 5 - y^2 - 5y + 2$
= $2y^2 - y^2 - 3y - 5y + 5 + 2$
= $y^2 - 8y + 7$

Application of Adding and Subtracting

1a. Write a simplified expression for the perimeter of the triangle.

b. If the value of x = 4 cm , what is the perimeter of the triangle?

2. Subtract $2x^2 + 2x + 5$ from $5x^2 - 7x + 4$

Means: $(5x^2 - 7x + 4) - (2x^2 + 2x + 5)$ = $5x^2 - 7x + 4 - 2x^2 - 2x - 5$ = $3x^2 - 9x - 1$

3. Subtract the sum of a + b and 2a – b from 4a – 4b.

```
Sum: (a + b) + (2a - b) = 3a
Answer: (4a - 4b) - (3a)
= 4a - 4b - 3a
= a - 4b
```

4. Write a monomial that describes the perimeter.

Perimeter: 4x + x + 2x + x + 2x + 2x = 12x

5. Find the missing side if the Perimeter is 5x + 3y - 2.

Need sum of given sides first. (2x + 4y - 3) + (-x + 7y + 4)= x + 11y + 1

Subtract sum of sides from Perimeter (5x + 3y - 2) - (x + 11y + 1) = 5x + 3y - 2 - x - 11y - 1 = 4x - 8y - 3... is the length of the missing side.

6. Find the length of PQ.

Answer: $(x^2 + 7x - 3) - (x^2 + 2x - 5)$ = $x^2 + 7x - 3 - x^2 - 2x + 5$ = 5x + 2 7a. Write a simplified expression for the perimeter.

Perimeter means to add up all the sides. How many sides does this shape have?

6 sides, but we are only given 4 so we need find the other 2 missing sides.

Perimeter = (3y) + (2x + 3) + (y + 7) + (2x) + (4y + 7) + (4x + 3)= 8y + 8x + 20

b). What is the perimeter if x = 1 cm and y = 2cm? = 8y + 8x + 20= 8(2) + 8(1) + 20 = 16 + 8 + 20 = 44 cm.

Multiplying Polynomials

(Sec 5.5 and Sec 5.6)

Remember:

When multiplying or dividing

+ and + = + — and + = — — and — = + + and — = —

We will only be multiplying a polynomial by a monomial. The monomial could be a constant term, ex: 3(2x) or 3(2x + 2) or it could contain a variable, ex: 3x (2x) or 3x (2x + 2), etc.

Students will be expected to multiply polynomials using symbolically, using area model and algebra tiles.

Example 1: 3 (2x)

Example 2: 3(2x + 2)

Example 3: 3x(2x)

Example 4: 3x(2x + 2)

Try These!

1. Multiply using algebra tiles.

- 2. Multiply using distributive property...using algebra. Careful with signs!
- A). 3(-2m + 4)= -6m + 12B). -4(x + 2)= -4x - 8C). $-2(-n^2 + 2n - 1)$ = $2n^2 - 4n + 2$
- 3. How would you sketch negatives with algebra tiles?
- A). 3(-2m + 4)B). -4(x + 2)B). -4(x + 2)Answer: = -6m + 12B). -4(x + 2)B). -4(x + 2)Comparison of the second s

4. Try These using algebra tiles! Check your answer using algebra.

Answer: -2x + 1

Answer: $2x^2 + 6x$

5. Sketch the answer using the area model: $-2(-n^2 + 2n - 1)$

	-n ²	+ 2n	- 1	
-2	2n ²	-4n	+ 2	Answer: $= 2n^2 - 4n + 2$

6. Multiply using distributive property.

A:	2(x + 10)	B:	5y(y + 1)	C:	-10(x + 2)
	= 2x + 20		$=5y^2+5y$		= -10x - 20
D:	6x(12-x)	E:	3(x – 7)	F:	-4x(2x-3)
	$=72x-6x^2$		= 3x - 21		$= -8x^2 + 12x$
G:	-6m(m+4)	Н:	-8(x-5)	I :	3(-8-7x)
	$=-6m^{2}-24m$		= -8x + 40		= -24 - 21x

Dividing Polynomials

Remember:

When multiplying or **dividing**

We will only be dividing a polynomial (one or more terms) by a monomial, symbolically, using algebra tiles and area models. The monomial could be a constant term or contain a variable

Ex:
$$4x^2 \div 2 = \frac{4x^2}{2}$$
 or $4x^2 \div 2x = \frac{4x^2}{2x}$ $\frac{4x^2 - 8x}{2}$ or $\frac{4x^2 - 8x}{2x}$, etc.

Dividing Symbolically:

<u>4x²</u>	When dividing a monomial by a monomial You	$\underline{4x^2} = 2x^2$
2	just divide the numbers like normal.	2
<u>4x²</u>	When dividing a monomial by a monomial and	
2x	there is also a variable in the denominator, you	$\underline{4x^2} = 2x$
	must remember the exponent rule. When	2x
	dividing powers with the same base, you	
	subtract exponents. Still divide the numerical	
	coefficients like normal.	
$4x^2 - 8x$	you can rewrite the quotient as a sum of two	$\underline{4x^2} - \underline{8x} = 2x^2 - 4x$
2	fractions and divide like it is two monomials.	2 2
$4x^2 - 8x$	Rewrite the quotient as a sum of two fractions	$\underline{4x^2} - \underline{8x} = 2x - 4$
2x	and divide like it is two monomials. Don't	2x 2x
	forget the exponent rules when there is a variable	
	in the denominator.	

NOTE:

However many terms are in the numerator, that's how many terms are in your answer. When dividing a trinomial by a monomial, you will have a trinomial answer.

Ex5:
$$\frac{12m^2 + 6m - 9}{3} = \frac{12m^2}{3} + \frac{6m}{3} - \frac{9}{3} = 4m^2 + 2m - 3$$

Be careful when dividing by negatives!

Ex6:
$$-3y^2 + 15xy - 21x^2 = -3y^2 + 15xy - 21x^2 = y^2 - 5xy + 7x^2$$

+ and + = + - and + = -- and - = + + and - = -

(Sec 5.5 and Sec 5.6)

Dividing Using an Area Model and Algebra Tiles

a). Find the missing dimension if the area of the rectangle is $4x^2$ and the length is 2x.

Area Model	Algebra Tiles
$2x 4x^2 \qquad \frac{4x^2}{2x} = 2x$	$ \begin{array}{c} ? \\ \hline \\ $

b). Find the missing dimension if the area of the rectangle is $4x^2 - 8x$ and the length is 2x.

