Grade 9: Unit 5- Polynomials

Section 5.1 Modeling Polynomials

Polynomial:

- an algebraic expression that contains one term or a sum of terms.
- The term(s) may contain variables (which will have whole number exponents).
- And a term may be a number.
$3 x+1 \longrightarrow$ is a polynomial. It contains a variable (whose exponent is 1) and numbers. Since it is an expression, there is no equal sign.
\longrightarrow This polynomial has two terms. A term is a number, or a variable, or the product of numbers and variables. Terms are separated by + or - . Therefore, 3 x , is one term and 1 , is another term.
\rightarrow In the term, $3 x$, the 3 is called the numerical coefficient. This is the number in front of the variable, it's the numerical factor of a term. X is called the variable.
$\longrightarrow 1$ is called the constant term. There is no variable attached to this number. It is the number in the expression that does not change.

Note:

An algebraic expression that contains a term with a variable in the denominator, such as $\frac{3}{n}$, or the square root of a variable, such as \sqrt{n}, is not a polynomial.

Types of Polynomials

We can classify a polynomial by the numbers of terms it has. Polynomials with 1,2 , or 3 terms have special names.

A monomial has 1 term; for example: $5 \mathrm{x}, 9,-2 \mathrm{p}^{2}$
A binomial has 2 terms; for example: $2 \mathrm{c}-5,2 \mathrm{~m}^{2}+3 \mathrm{~m}, \mathrm{x}+\mathrm{y}$
A trinomial has 3 terms; for example: $2 h^{2}-6 h+4, x+y+z$

Example: Identify (i) the variable
(ii) the number of terms
(iii) the numerical coefficient(s)
(iv) the constant term and
(v) the type of polynomial
a). $3 x^{2}+2 x-1$
(i) x
b). $6 x y-x^{3}$
(i) x
(ii) 3
(ii) 2
(iii) 3 and 2
(iii) 6 and -1
(iv) -1
(iv) none
(v) trinomial
(v) binomial
c). $x y+6-z+2 x^{2}$
(i) x, y and z
(ii) 4
(iii) $+1,-1$ and 2 .
(iv) +6
(v) just a polynomial
(more than 3 terms does not have a special name).

Equivalent Polynomials - are polynomials that have exactly the same terms, but the terms could be in a different order.

Both these polynomials have
+3 with x^{2}
+2 with x and
a constant term of -1

This polynomial is different because
it has -3 with x^{2} and
a constant term of +1

Degree of a Polynomial

Degree: The term with the greatest exponent.

Rules for determining the degree:

- The degree of a monomial is the sum of the exponents of its variables.

Monomial	Degree
$4 \mathrm{x}^{2}$	2
9 ab	2

- The degree of a polynomial with one variable is the highest power of the variable in any one term.

Polynomials	Degree
$6 x^{2}+3 x$	2
$7+x^{2}-1$	2

Example: Name the coefficients, degree and the constant term of each polynomial.
A: $-3 x^{2}+4 x-5$
B: $3+2 \mathrm{ab}-\mathrm{b}$
C: -6-5x

Solution:

A: Coefficients: -3 and 4
Degree: 2
Constant Term: -5
B: Coefficients: -1 and 2
Degree: 2
Constant Term: 3
C: Coefficients: -5
Degree: 1
Constant Term: -6

Modeling Polynomials

In algebra we use algebra tiles to model integers and variables.

Shaded tiles represent positive tiles

$$
Z=+1
$$

$$
7 \% 1=+\mathrm{x}
$$

Non-shaded tiles represent negative tiles

Colors can also be used to represent a tile.

IN YOUR TEXTBOOK:

Yellow is Positive

Red is Negative

The variable most commonly used is X , however, any variable can be used.

REAL ALGEBRA TILES:

Green and Red is Positive
White is Negative

**** To be clear in your notes: Shaded is Positive Unshaded is Negative

Algebra tiles get their name from the area of their tiles. Remember length \times width $=$ area

Examples:

1. Use algebra tiles to model each expression.
a). $3 x^{2}-2 x+5$

b). $x^{2}+3 x-6$

c) $2 b^{2}-b+4$

d). $5 a-3$

Remember any variable can be used instead of x .
2. Match the following polynomials to the appropriate diagram.
A: $2 x^{2}+3$

B: $3 \mathrm{x}+2$
(i)

Z

3. Write a polynomial expression for each diagram below.
a).

b).

Answers:
a). $x^{2}-2 x$
b). $-3 x+1$
c). $2 x^{2}+4 x-3 x$

A polynomial should be written in descending order. This means the exponent of the variable should decrease from left to right.

Ex: The polynomial $2 \mathrm{k}-4 \mathrm{k}^{2}+7$ is properly written as $-4 \mathrm{k}^{2}+2 \mathrm{k}+7$ in descending order.
4. Rearrange the following polynomials in descending order.
a). $-2 p+4 p^{2}-9$
b). $5 x^{2}+7-8 x$
c). $33+90 c+100 c^{2}$

Answers:
a). $4 p^{2}-2 p-9$
b). $5 x^{2}-8 x+7$
c). $100 c^{2}+90 c+33$

Section 5.2 Like Terms and Unlike Terms

When you worked with integers, $\mathrm{a}+1$ tile and a -1 tile formed a zero pair.

The same applies for the x and x^{2} tiles.

Any two opposite colored tiles of the same size has a sum of zero. We can combine these tiles because they are like terms.

Like Terms - terms that have the same variable, raised to the same exponent.
Examples: a). 4 x and -2 x
b). +1 and +8
c). x^{2} and $-3 x^{2}$

Like terms can be combined or simplified. Sketch the tiles above and cancel the zero pairs where possible, to simplify the polynomial.
a). $4 x$ and $-2 x$

Simplified: 2x
b). +1 and +8

KZロZム
c). x^{2} and $-3 x^{2}$

Simplified: $-2 x^{2}$
is 0
Unlike Terms - terms which contain different variables entirely or are the same variable raised to different exponents.

Examples: a). $\mathrm{x}+\mathrm{y}$
b). $2 x+3$
c). $4 x+2 x^{2}$

These are simplified as much as possible already because they don't contain any like terms.

Examples: Write a simplified expression for the algebra tiles below.

You can rearrange the tiles so you have like terms next to each other.

These tiles represent the polynomial $2 x^{2}-x^{2}-4 x-3+2$
Cancel zero pairs to simplify.

Answer: $x^{2}-4 x-1$
Therefore, without tiles, the polynomial $2 x^{2}-x^{2}-4 x-3+2$ simplifies to $x^{2}-4 x-1$
2). Sketch the simplified expression using algebra tiles for: $4 n^{2}-1-3 n-3+5 n-2 n^{2}$

Rearranged:

Simplified answer: $2 n^{2}+2 n-4$

Therefore the polynomial $4 n^{2}-1-3 n-3+5 n-2 n^{2}$ simplified to $2 n^{2}+2 n-4$.
Can you see how to simplify like terms without using tiles?
\(\left.\begin{array}{c}\underbrace{4 n^{2}-1-3 n-3+5 n-n^{2}} \quad means 4 n^{2} and-2 n^{2}=2 n^{2}

-1-\underbrace{3 n-3+\underbrace{5 n}} \quad means-3 n and 5 n=2 n

-1-3

means-1 and-3=-4\end{array}\right\}\)| It's just like adding |
| :--- |
| Integers. Be careful |
| of the signs. |\quad| Answer: $2 n^{2}+2 n-4$ |
| :--- |

3). Simplify each polynomial without using tiles.
A: $3 x+5 x$
B: $-13 a-10 a$
$=8 \mathrm{x}$
$=-23 a$
C: $16 n+n-17 n$
$=0$
D: $-j+7 k-3 j$

$$
=-4 j+7 \mathrm{k}
$$

E: $8 a-2 b-6 a-3 b$
$=2 a-5 b$
F: $-q+7 q+11 n+11 p-8 q$
$=-2 q+11 n+11 p$
4. Wayne was asked to write an expression equivalent to $2 x-7-4 x+8$.

His solution was:

$$
\begin{aligned}
& 2 x-7-4 x+8 \\
= & 2 x-4 x-7+8 \\
= & 2 x-1
\end{aligned}
$$

a). What errors did he make?
\rightarrow When he combined $2 x-4 x$, he said the answer was $2 x$ and it should have been $-2 x$. When he combined $-7+8$, he said the answer was -1 and it should have been +1 .
b). Show the correct simplification.

$$
\begin{aligned}
& 2 x-7-4 x+8 \\
= & 2 x-4 x-7+8 \\
= & -2 x+1
\end{aligned}
$$

Section 5.3 Adding Polynomials

To add or subtract separate polynomials, you just need to combine like terms.
Example 1: Find the sum of each set of polynomials, using algebra tiles and symbolically.

Algebra	Algebra Tiles
The sum is: $\left(3 x^{2}+2 x+4\right)+\left(-x^{2}+3 x-5\right)$	
We can remove the brackets: $3 x^{2}+2 x+4+-x^{2}+3 x-5$	
Group like terms (probably easiest way) $3 x^{2}+-x^{2}+2 x+3 x+4-5$	
Combine like terms and use zero property: $2 x^{2}+5 x-1$	

Example 2: Add symbolically (using algebra)

$$
\begin{aligned}
& \left(-2 x^{2}-3 x\right)+\left(2 x+x^{2}\right) \\
= & -2 x^{2}+x^{2}-3 x+2 x \\
= & -x^{2}-1 x
\end{aligned}
$$

Example 3: Add: using algebra tiles. Write your answer using tiles and symbolically.

$$
=3 x^{2}-2 x+2
$$

You can add polynomials horizontally and vertically.
Try: $\quad(7 n+14)+\left(-6 n^{2}+n-6\right)$

Horizontally

Vertically

$\begin{array}{r}-6 n^{2}+n-6 \\ +\quad 7 n+14 \\ \hline-6 n^{2}+8 n+8\end{array}$

Example 4: Add $\left(2 x^{2}+3 x-2\right)+\left(-x^{2}+7 x-3\right)$ both horizontally and vertically.

Horizontally

$2 x^{2}+3 x-2+-x^{2}+7 x-3$
$2 x^{2}+-x^{2}+3 x+7 x-2-3$
$=x^{2}+10 x-5$

Vertically

$$
\begin{array}{r}
2 x^{2}+3 x-2 \\
+\quad-x^{2}+7 x-3 \\
\hline x^{2}+10 x-5
\end{array}
$$

Example 5: Write a polynomial for the perimeter of this rectangle.

Perimeter: add up all the sides.

$$
\begin{array}{r}
2 x+1 \\
2 x+1 \\
3 x+2 \\
+\quad 3 x+2 \\
\hline 10 x+6
\end{array}
$$

Example 6: Adding polynomials in two variables
Add: $\left(2 a^{2}+a-3 b-7 a b+3 b^{2}\right)+\left(-4 b^{2}+3 a b+6 b-5 a+5 a^{2}\right)$

$$
\begin{aligned}
& =2 a^{2}+a-3 b-7 a b+3 b^{2}+-4 b^{2}+3 a b+6 b-5 a+5 a^{2} \\
& =2 a^{2}+5 a^{2}+3 b^{2}-4 b^{2}+a-5 a-3 b+6 b-7 a b+3 a b \\
& =7 a^{2}-b^{2}-4 a+3 b-4 a b
\end{aligned}
$$

Question:

A student added $\left(4 x^{2}-8 x+1\right)+\left(2 x^{2}-6 x-2\right)$ as follows.

$$
\begin{aligned}
& \left(4 x^{2}-8 x+1\right)+\left(2 x^{2}-6 x-2\right) \\
& =4 x^{2}-8 x+1+2 x^{2}-6 x-2 \\
& =4 x^{2}+2 x^{2}-8 x-6 x+1-2 \\
& =6 x^{2}-2 x-1
\end{aligned}
$$

(i) Is the students work correct?
(ii) If not, explain where the student made any errors and write the correct answer.

Answer: This student is not correct, they made a mistake combining their x-term.

$$
-8 x-6 x=-14 x \text { not }-2 x
$$

Correct answer: $6 x^{2}-14 x-1$

Section 5.4 Subtracting Polynomials

Remember from earlier this year the word "opposite".

What is the opposite of 2.4?
Answer: - 2.4

What is the opposite of $\mathbf{- 1 0}$?
Answer: 10

By definition, opposite numbers have a sum of zero. The same idea applies to polynomials.
Opposite polynomials will have a sum of zero.

What is the opposite of $\mathbf{2 x}$?
Answer: - 2x

What is the opposite of $-\mathbf{x}^{2}$?
Answer: x^{2}

Example 1: What is the opposite of each polynomial listed below?
a). $-5 x$
b). 11
c). $-24 x^{4}$

Getting the opposite of a monomial is just like getting the opposite of a \#.
Answers: a). 5x
b). -11
c). $24 x^{4}$

How do you think you will get the opposite of a binomial or trinomial?
d). $2 x+3$

Answer: $\quad-2 x-3$
e). $4 x^{2}-7 x+3$

Answer: $\quad-4 x^{2}+7 x-3$

f). $\left(-2 x y-2 y^{2}+3 x^{2}\right) \quad$ Answer: $2 x y+2 y^{2}-3 x^{2}$

Example 2: Sketch the opposite of the polynomial using algebra tiles.
a).

b).

Answers:
a).

b).

When subtracting polynomials you must remember to ADD THE OPPOSITE of every term in the polynomial first, then combine like terms.

We will be subtracting polynomials symbolically and using algebra tiles.

Example 3: Subtract using algebra, then simplify.
a). $\left(3 x^{2}-6 x+4\right)-\left(7 x^{2}+3 x-2\right)$

We must add the opposite of every term in this polynomial. The first polynomial does not change.
$=\left(3 x^{2}-6 x+4\right)+\left(-7 x^{2}-3 x+2\right) \quad$ Now you are back to adding polynomials.
$=3 x^{2}-7 x^{2}-3 x-6 x+4+2$
$=-4 x^{2}-9 x+6$
b). $\left(-2 a^{2}+a-1\right)-\left(a^{2}-3 a+2\right)$

$$
\begin{aligned}
& =\left(-2 a^{2}+a-1\right)+\left(-a^{2}+3 a-2\right) \\
& =-2 a^{2}-a^{2}+a+3 a-1-2 \\
& =-3 a^{2}+4 a-3
\end{aligned}
$$

Example 4: Subtract using algebra tiles, then simplify.

$$
=3 x^{2}-5 x-1
$$

$$
=-3 x^{2}+x+4
$$

Just like with adding, we can subtract polynomials horizontally and vertically.
Example 5: Subtract vertically.
a). $\left(3 x^{2}+4 x-1\right)$
$-\left(2 x^{2}-3 x+2\right)$
$=x^{2}+7 x-3$

b). $\left(5 x^{2}-3 x y+2 y^{2}\right)$
$-\left(8 x^{2}-7 x y-4 y^{2}\right)$
$=-3 x^{2}+4 x y+6 y^{2}$

Example 6: Subtract using algebra and algebra tiles.

Example 7:

A student subtracted like this:
$\left(2 y^{2}-3 y+5\right)-\left(y^{2}+5 y-2\right)$
$=2 y^{2}-3 y+5-y^{2}+5 y-2$
$=2 y^{2}-y^{2}-3 y+5 y+5-2$
$=y^{2}-2 y+3$
(i) Explain why the solution is incorrect.
(ii) What is the correct answer? Show your work.

Answer:

(i) They added the opposite incorrectly. They only got the opposite of y^{2}, when they should have gotten the opposite of every term in the polynomial, including the opposite of $5 y$ and -2 .
(ii) $\left(2 y^{2}-3 y+5\right)-\left(y^{2}+5 y-2\right)$
$=2 y^{2}-3 y+5-y^{2}-5 y+2$
$=2 y^{2}-y^{2}-3 y-5 y+5+2$
$=y^{2}-8 y+7$

Application of Adding and Subtracting

1a. Write a simplified expression for the perimeter of the triangle.

$$
\text { Answer: } \begin{aligned}
& (5 x+3)+(4 x+7)+(3 x+2) \\
= & 5 x+4 x+3 x+3+7+2 \\
= & 12 x+12
\end{aligned}
$$

b. If the value of $x=4 \mathrm{~cm}$, what is the perimeter of the triangle?

$$
\begin{aligned}
\text { Perimeter } & =12 \mathrm{x}+12 \\
& =12(4)+12 \\
& =48+12 \\
& =60 \mathrm{~cm}
\end{aligned}
$$

2. Subtract $2 x^{2}+2 x+5$ from $5 x^{2}-7 x+4$

$$
\begin{aligned}
\text { Means: } & \quad\left(5 x^{2}-7 x+4\right)-\left(2 x^{2}+2 x+5\right) \\
= & 5 x^{2}-7 x+4-2 x^{2}-2 x-5 \\
= & 3 x^{2}-9 x-1
\end{aligned}
$$

3. Subtract the sum of $a+b$ and $2 a-b$ from $4 a-4 b$.

Sum: $(\mathrm{a}+\mathrm{b})+(2 \mathrm{a}-\mathrm{b})=3 \mathrm{a}$
Answer: $(4 a-4 b)-(3 a)$

$$
=4 a-4 b-3 a
$$

$$
=a-4 b
$$

4. Write a monomial that describes the perimeter.

Perimeter: $4 \mathrm{x}+\mathrm{x}+2 \mathrm{x}+\mathrm{x}+2 \mathrm{x}+2 \mathrm{x}=12 \mathrm{x}$
5. Find the missing side if the Perimeter is $5 x+3 y-2$.

> Need sum of given sides first.
> $\quad(2 x+4 y-3)+(-x+7 y+4)$
> $=x+11 y+1$

Subtract sum of sides from Perimeter
$(5 x+3 y-2)-(x+11 y+1)$
$=5 x+3 y-2-x-11 y-1$
$=4 \mathrm{x}-8 \mathrm{y}-3$
... is the length of the missing side.
6. Find the length of $P Q$.

Answer: $\left(x^{2}+7 x-3\right)-\left(x^{2}+2 x-5\right)$

$$
\begin{aligned}
& =x^{2}+7 x-3-x^{2}-2 x+5 \\
& =5 x+2
\end{aligned}
$$

7a. Write a simplified expression for the perimeter.
2x
$2 x+3$

Perimeter means to add up all the sides. How many sides does this shape have?
6 sides, but we are only given 4 so we need find the other 2 missing sides.

$$
\begin{aligned}
\text { Perimeter } & =(3 y)+(2 x+3)+(y+7)+(2 x)+(4 y+7)+(4 x+3) \\
& =8 y+8 x+20
\end{aligned}
$$

b). What is the perimeter if $\mathrm{x}=1 \mathrm{~cm}$ and $\mathrm{y}=2 \mathrm{~cm}$?

$$
\begin{aligned}
& =8 y+8 x+20 \\
& =8(2)+8(1)+20=16+8+20=44 \mathrm{~cm}
\end{aligned}
$$

Remember:
When multiplying or dividing

We will only be multiplying a polynomial by a monomial. The monomial could be a constant term, ex: $3(2 x)$ or $3(2 x+2)$ or it could contain a variable, ex: $3 x(2 x)$ or $3 x(2 x+2)$, etc.

Students will be expected to multiply polynomials using symbolically, using area model and algebra tiles.

Example 1: 3 (2x)

Using algebra:
个 (2x) Just multiply the numbers. $3(2 x)=6 x$

Using Area model: 3 (2 x)

Example 2: $3(2 \mathrm{x}+2)$

Using algebra: $3(2 x+2)$

Use distributive property
Multiply each term of the polynomial inside the bracket by the monomial in front of the bracket.

Therefore: $3 \times 2 \mathrm{x}$ and 3×2

$$
3(2 x+2)=6 x+6
$$

Using Algebra Tiles: $3(2 \mathrm{x}+2$)

$$
2 x+2
$$

This area is $6 \mathrm{x}+6$

3	Using Area model: 3 ($2 \mathrm{x}+2$)		
	$2 \mathrm{x}+2$		
	6x	6	Area is $6 x+6$

Example 3: $3 \mathrm{x}(2 \mathrm{x})$

Using algebra: $3 \mathrm{x}(2 \mathrm{x})$
Multiply the numbers and
add exponents on the variable...
Remember the exponent rules!
$3 \mathrm{x}(2 \mathrm{x})=6 \mathrm{x}^{2}$

Using Algebra Tiles: 3x (2x)

This area is $6 x^{2}$

Example 4: $3 x(2 x+2)$

Using algebra: $3 \mathrm{x}(2 \mathrm{x}+2)$
Use distributive property
Multiply each term of the
polynomial inside the bracket by
the monomial in front of the
bracket. Don't forget exponent
rule!
Therefore: $3 \times 2 \mathrm{x}$ and 3×2
$3 \mathrm{x}(2 \mathrm{x}+2)=6 \mathrm{x}^{2}+6 \mathrm{x}$

Using Area model: $3(2 x+2)$

Area is $6 x^{2}+6 x$

Try These!

1. Multiply using algebra tiles.

Answer: $4 \mathrm{x}+6$

Answer: $3 x^{2}+x$
2. Multiply using distributive property...using algebra. Careful with signs!
A). $3(-2 m+4)$
B). $-4(x+2)$
C). $-2\left(-n^{2}+2 n-1\right)$
$=-6 \mathrm{~m}+12$
$=-4 \mathrm{x}-8$
$=2 n^{2}-4 n+2$
3. How would you sketch negatives with algebra tiles?
A). $3(-2 m+4)$
B). $-4(x+2)$

Answer: = -6m + 12

Answer: $=-4 \mathrm{x}-8$

4. Try These using algebra tiles! Check your answer using algebra.
A). $-(2 x-1)$

Answer: $-2 x+1$
B). $-2 x(-x-3)$

Answer: $2 x^{2}+6 x$
5. Sketch the answer using the area model: $-2\left(-n^{2}+2 n-1\right)$

$-n^{2}$$2 n^{2}$ $-4 n$ -1 $-4 n$ +2

$$
\text { Answer: }=2 n^{2}-4 n+2
$$

6. Multiply using distributive property.
A: $\quad 2(x+10)$
B: $\quad 5 y(y+1)$
C: $\quad-10(x+2)$

$$
=-10 x-20
$$

$=2 \mathrm{x}+20$

$$
=5 y^{2}+5 y
$$

D: $\quad 6 x(12-x)$
E: $\quad 3(\mathrm{x}-7)$
$=3 \mathrm{x}-21$
F: $\begin{aligned} & -4 x(2 x-3) \\ & =-8 x^{2}+12 x\end{aligned}$
G: $\quad-6 m(m+4)$
$\mathrm{H}: \quad-8(\mathrm{x}-5)$
I: $\quad 3(-8-7 x)$
$=-6 m^{2}-24 m$
$=-8 x+40$
$=-24-21 \mathrm{x}$

Remember:
When multiplying or dividing ...

$$
\begin{array}{|ll}
+ \text { and }+=+ & - \text { and }+=- \\
- \text { and }-=+ & + \text { and }-=-
\end{array}
$$

We will only be dividing a polynomial (one or more terms) by a monomial, symbolically, using algebra tiles and area models. The monomial could be a constant term or contain a variable

Ex: $4 x^{2} \div 2=\frac{4 x^{2}}{2}$ or $4 x^{2} \div 2 x=\frac{4 x^{2}}{2 x} \quad \frac{4 x^{2}-8 x}{2}$ or $\frac{4 x^{2}-8 x}{2 x}$, etc.

Dividing Symbolically:

$\frac{4 \mathrm{x}^{2}}{2}$	When dividing a monomial by a monomial You just divide the numbers like normal.	$\frac{4 \mathrm{x}^{2}=2 \mathrm{x}^{2}}{2}$
$\frac{4 \mathrm{x}^{2}}{2 \mathrm{x}}$	When dividing a monomial by a monomial and there is also a variable in the denominator, you must remember the exponent rule. When dividing powers with the same base, you subtract exponents. Still divide the numerical coefficients like normal.	$\frac{4 \mathrm{x}^{2}}{2 \mathrm{x}}=2 \mathrm{x}$
$\frac{4 \mathrm{x}^{2}-8 \mathrm{x}}{2}$	you can rewrite the quotient as a sum of two fractions and divide like it is two monomials.	$\frac{4 \mathrm{x}^{2}-\frac{8 \mathrm{x}}{2}=2 \mathrm{x}^{2}-4 \mathrm{x}}{2}$
$\frac{4 \mathrm{x}^{2}-8 \mathrm{x}}{2 \mathrm{x}}$	Rewrite the quotient as a sum of two fractions and divide like it is two monomials. Don't forget the exponent rules when there is a variable in the denominator.	$\frac{4 \mathrm{x}^{2}-\frac{8 \mathrm{x}}{2 \mathrm{x}}=2 \mathrm{x}-4}{2 \mathrm{x}}$

NOTE:

However many terms are in the numerator, that's how many terms are in your answer.
When dividing a trinomial by a monomial, you will have a trinomial answer.
Ex5: $\frac{12 m^{2}+6 m-9}{3}=\frac{12 m^{2}}{3}+\frac{6 m}{3}-\frac{9}{3}=4 m^{2}+2 m-3$
Be careful when dividing by negatives!
Ex6

$$
\frac{-3 y^{2}+15 x y-21 x^{2}}{-3}=\frac{-3 y^{2}}{-3}+\frac{15 x y}{-3}-\frac{21 x^{2}}{-3}=y^{2}-5 x y+7 x^{2}
$$

Dividing Using an Area Model and Algebra Tiles

a). Find the missing dimension if the area of the rectangle is $4 x^{2}$ and the length is $2 x$.

b). Find the missing dimension if the area of the rectangle is $4 x^{2}-8 x$ and the length is $2 x$.

Area Model			Algebra Tiles				
	?	$\frac{4 x^{2}-8 x}{2 x}$?				The missing dimension is $2 x-4$ because$\frac{4 x^{2}-8 x}{2 x}=2 x-4$
2x	$4 x^{2}-8 x$		3 2				
	$\frac{8 x}{2 x}=$						

